Extracorporeal photopheresis for the treatment of graft rejection in 33 adult kidney transplant recipients.

Background - Extracorporeal photopheresis (ECP) has shown encouraging results in the prevention of allograft rejection in heart transplantation. However, the role of ECP in kidney transplant (KT) rejection needs to be determined. Methods - This multicentre retrospective study included 33 KT recipients who were treated with ECP for allograft rejection (23 acute antibody-mediated rejections (AMRs), 2 chronic AMRs and 8 acute cellular rejections (ACRs)). The ECP indications were KT rejection in patients who were resistant to standard therapies (n=18) or in patients for whom standard therapies were contraindicated because of concomitant infections or cancers (n=15). Results - At 12 months (M12) post-ECP, 11 patients (33%) had a stabilization of kidney function with a graft survival rate of 61%. The Banff AMR score (g+ptc+v) was a risk factor for graft loss at M12 (HR 1.44 [1.01-2.05], p<0.05). The factorial mixed data analysis identified 2 clusters. Patients with a functional graft at M12 tended to have cellular and/or chronic rejections. Patients with graft loss at M12 tended to have acute rejections and/or AMR; higher serum creatinine levels; DSA levels and histologic scores of AMR; and a longer delay between the rejection and ECP start than those of patients with functional grafts. Conclusions - ECP may be helpful to control ACR or moderate AMR in KT recipients presenting concomitant opportunistic infections or malignancies when it is initiated early. Copyright © 2019 Elsevier Ltd. All rights reserved.
BACKGROUND:
There is no standard definition for “HLA incompatible” transplants. For the first time, we systematically assessed how HLA incompatibility was defined in contemporary peer-reviewed publications and its prognostic implication to transplant outcomes.
 
METHODS:
We combined 2 independent searches of MEDLINE, EMBASE, and the Cochrane Library from 2015 to 2019. Content-expert reviewers screened for original research on outcomes of HLA-incompatible transplants (defined as allele or molecular mismatch and solid-phase or cell-based assays). We ascertained the completeness of reporting on a predefined set of variables assessing HLA incompatibility, therapies, and outcomes. Given significant heterogeneity, we conducted narrative synthesis and assessed risk of bias in studies examining the association between death-censored graft failure and HLA incompatibility.
 
RESULTS:
Of 6656 screened articles, 163 evaluated transplant outcomes by HLA incompatibility. Most articles reported on cytotoxic/flow T-cell crossmatches (n = 98). Molecular genotypes were reported for selected loci at the allele-group level. Sixteen articles reported on epitope compatibility. Pretransplant donor-specific HLA antibodies were often considered (n = 143); yet there was heterogeneity in sample handling, assay procedure, and incomplete reporting on donor-specific HLA antibodies assignment. Induction (n = 129) and maintenance immunosuppression (n = 140) were frequently mentioned but less so rejection treatment (n = 72) and desensitization (n = 70). Studies assessing death-censored graft failure risk by HLA incompatibility were vulnerable to bias in the participant, predictor, and analysis domains.
 
CONCLUSIONS:
Optimization of transplant outcomes and personalized care depends on accurate HLA compatibility assessment. Reporting on a standard set of variables will help assess generalizability of research, allow knowledge synthesis, and facilitate international collaboration in clinical trials.