Outcome of Extracorporeal Photopheresis as an Add-On Therapy for Antibody-Mediated Rejection in Lung Transplant Recipients.

INTRODUCTION: The diagnosis and treatment of antibody-mediated rejection (AMR) after lung transplantation has recently gained recognition within the transplant community. Extracorporeal photopheresis (ECP), currently used to treat chronic lung allograft dysfunction, modulates various pathways of the immune system known to be involved in AMR. We hypothesize that adding ECP to established AMR treatments could prevent the rebound of donor-specific antibodies (DSA). OBJECTIVES: This study aimed to analyze the role of ECP as an add-on therapy to prevent the rebound of DSA. METHODS: Lung transplant recipients who received ECP as an add-on therapy for pulmonary AMR between January 2010 and January 2019 were included in this single-center retrospective analysis. Baseline demographics of the patients, as well as their immunological characteristics and long-term transplant outcomes, were analyzed. RESULTS: A total of 41 patients developed clinical AMR during the study period. Sixteen patients received ECP as an add-on therapy after first-line AMR treatment. Among the 16 patients, 2 (13%) had pretransplant DSA, both against human leukocyte antigen (HLA) class I (B38, B13, and C06). Fifteen patients (94%) developed de novo DSA (dnDSA), i.e., 10 (63%) against class I and 14 (88%) against class II. The median time to dnDSA after lung transplantation was 361 days (range 25-2,548). According to the most recent International Society of Heart and Lung Transplantation (ISHLT) consensus report, 2 (13%) patients had definite clinical AMR, 6 (38%) had probable AMR, and 7 (44%) had possible AMR. The median mean fluorescence intensity (MFI) of dnDSA at the time of clinical diagnosis was 4,220 (range 1,319-10,552) for anti-HLA class I and 10,953 (range 1,969-27,501) for anti-HLA class II antibodies. ECP was performed for a median of 14 cycles (range 1-64). MFI values of dnDSA against HLA classes I and II were significantly reduced over the treatment period (for anti-class I: 752; range 70-2,066; for anti-class II: 5,612; range 1,689-21,858). The 1-year survival rate was 55%. No adverse events related to ECP were reported in any of the patients. CONCLUSIONS: ECP is associated with a reduction of dnDSA in lung transplant recipients affected by AMR. Prospective studies are warranted to confirm the beneficial effects of ECP in the setting of AMR. Copyright © 2020 by S. Karger AG, Basel.
BACKGROUND:
There is no standard definition for “HLA incompatible” transplants. For the first time, we systematically assessed how HLA incompatibility was defined in contemporary peer-reviewed publications and its prognostic implication to transplant outcomes.
 
METHODS:
We combined 2 independent searches of MEDLINE, EMBASE, and the Cochrane Library from 2015 to 2019. Content-expert reviewers screened for original research on outcomes of HLA-incompatible transplants (defined as allele or molecular mismatch and solid-phase or cell-based assays). We ascertained the completeness of reporting on a predefined set of variables assessing HLA incompatibility, therapies, and outcomes. Given significant heterogeneity, we conducted narrative synthesis and assessed risk of bias in studies examining the association between death-censored graft failure and HLA incompatibility.
 
RESULTS:
Of 6656 screened articles, 163 evaluated transplant outcomes by HLA incompatibility. Most articles reported on cytotoxic/flow T-cell crossmatches (n = 98). Molecular genotypes were reported for selected loci at the allele-group level. Sixteen articles reported on epitope compatibility. Pretransplant donor-specific HLA antibodies were often considered (n = 143); yet there was heterogeneity in sample handling, assay procedure, and incomplete reporting on donor-specific HLA antibodies assignment. Induction (n = 129) and maintenance immunosuppression (n = 140) were frequently mentioned but less so rejection treatment (n = 72) and desensitization (n = 70). Studies assessing death-censored graft failure risk by HLA incompatibility were vulnerable to bias in the participant, predictor, and analysis domains.
 
CONCLUSIONS:
Optimization of transplant outcomes and personalized care depends on accurate HLA compatibility assessment. Reporting on a standard set of variables will help assess generalizability of research, allow knowledge synthesis, and facilitate international collaboration in clinical trials.