Photopheresis Abates the Anti-HLA Antibody Titer and Renal Failure Progression in Chronic Antibody-Mediated Rejection.

Chronic renal antibody-mediated rejection (ABMR) is a common cause of allograft failure, but an effective therapy is not available. Extracorporeal photopheresis (ECP) has been proven successful in chronic lung and heart rejection, and graft versus host disease. The aim of this study was to evaluate the effectiveness of ECP in chronic ABMR patients. PATIENTS AND METHODS: We investigated ECP treatment in 14 patients with biopsy-proven chronic ABMR and stage 2-3 chronic renal failure. The primary aim was to e valuate the eGFR lowering after 1 year of ECP therapy. The ECP responders (R) showed eGFR reduction greater than 20% vs the basal levels. We also evaluated the effectiveness of ECP on proteinuria, anti-HLA antibodies (HLAab), interleukin 6 (IL-6) serum levels, and CD3, CD4, CD8, CD19, NK, Treg and T helper 17 (Th17) circulating cells. RESULTS: Three patients dropped out of the study. The R patients were eight (72.7%) out of the 11 remaining patients. Because ECP was not associated with any adverse reaction, the R patients continued such treatment for up to 3 years, showing a persisting eGFR stabilization. Twenty four hour proteinuria did not increase in the R patients over the follow-up when compared to the non-responder patients (NR). In the R patients, the HLAab levels were reduced and completely cleared in six out of eight patients when compared with the NR patients. The NR HLAab levels also increased after the discontinuation of the ECP. The ECP in the R patients showed a decrease in CD3, CD4, CD8, CD19, and NK circulating cells. The ECP treatment in the R patients also induced Tregs increase and Th17 cell decrease, and a decrease of the IL-6 serum levels. CONCLUSIONS: ECP abates the HLAab titer and renal failure progression in patients with chronic renal ABMR, modulating the immune cellular and humoral responses.
BACKGROUND:
There is no standard definition for “HLA incompatible” transplants. For the first time, we systematically assessed how HLA incompatibility was defined in contemporary peer-reviewed publications and its prognostic implication to transplant outcomes.
 
METHODS:
We combined 2 independent searches of MEDLINE, EMBASE, and the Cochrane Library from 2015 to 2019. Content-expert reviewers screened for original research on outcomes of HLA-incompatible transplants (defined as allele or molecular mismatch and solid-phase or cell-based assays). We ascertained the completeness of reporting on a predefined set of variables assessing HLA incompatibility, therapies, and outcomes. Given significant heterogeneity, we conducted narrative synthesis and assessed risk of bias in studies examining the association between death-censored graft failure and HLA incompatibility.
 
RESULTS:
Of 6656 screened articles, 163 evaluated transplant outcomes by HLA incompatibility. Most articles reported on cytotoxic/flow T-cell crossmatches (n = 98). Molecular genotypes were reported for selected loci at the allele-group level. Sixteen articles reported on epitope compatibility. Pretransplant donor-specific HLA antibodies were often considered (n = 143); yet there was heterogeneity in sample handling, assay procedure, and incomplete reporting on donor-specific HLA antibodies assignment. Induction (n = 129) and maintenance immunosuppression (n = 140) were frequently mentioned but less so rejection treatment (n = 72) and desensitization (n = 70). Studies assessing death-censored graft failure risk by HLA incompatibility were vulnerable to bias in the participant, predictor, and analysis domains.
 
CONCLUSIONS:
Optimization of transplant outcomes and personalized care depends on accurate HLA compatibility assessment. Reporting on a standard set of variables will help assess generalizability of research, allow knowledge synthesis, and facilitate international collaboration in clinical trials.
 
Â